MAXIMAL REGULARITY FOR ABSTRACT PARABOLIC PROBLEMS WITH INHOMOGENEOUS BOUNDARY DATA IN Lp-SPACES

نویسنده

  • Jan Prüss
چکیده

Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal Lp-regularity is shown. By means of this purely operator theoretic approach, classical results on Lp-regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface diffusion for the diffusion equation is included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Lp-Lq-regularity for parabolic problems with inhomogeneous boundary data

In this paper we investigate vector-valued parabolic initial boundary value problems (A(t, x,D),Bj(t, x,D)) subject to general boundary conditions in domains G in R with compact C-boundary. The top-order coefficients of A are assumed to be continuous. We characterize optimal L-L-regularity for the solution of such problems in terms of the data. We also prove that the normal ellipticity conditio...

متن کامل

Maximal regular boundary value problems in Banach-valued function spaces and applications

The nonlocal boundary value problems for differential operator equations of second order with dependent coefficients are studied. The principal parts of the differential operators generated by these problems are non-selfadjoint. Several conditions for the maximal regularity and the Fredholmness in Banach-valued Lp-spaces of these problems are given. By using these results, the maximal regularit...

متن کامل

Interpolation, Embeddings and Traces of Anisotropic Fractional Sobolev Spaces with Temporal Weights

We investigate the properties of a class of weighted vector-valued Lp-spaces and the corresponding (an)isotropic Sobolev-Slobodetskii spaces. These spaces arise naturally in the context of maximal Lp-regularity for parabolic initial-boundary value problems. Our main tools are operators with a bounded H∞-calculus, interpolation theory, and operator sums.

متن کامل

Maximal Lp-Regularity of Parabolic Problems with Boundary Dynamics of Relaxation Type

In this paper we investigate vector-valued parabolic initial boundary value problems of relaxation type. Typical examples for such boundary conditions are dynamic boundary conditions or linearized free boundary value problems like in the Stefan problem. We present a complete Lp-theory for such problems which is based on maximal regularity of certain model problems.

متن کامل

On Quasilinear Parabolic Evolution Equations in Weighted Lp-Spaces II

Our study of abstract quasi-linear parabolic problems in time-weighted Lp-spaces, begun in [17], is extended in this paper to include singular lower order terms, while keeping low initial regularity. The results are applied to reactiondiffusion problems, including Maxwell-Stefan diffusion, and to geometric evolution equations like the surface-diffusion flow or the Willmore flow. The method pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002